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Abstract

We propose a new model of incomplete preferences under uncertainty, which

we call unanimous dual-self preferences. Act f is considered more desirable than

act g when, and only when, both the evaluation of an optimistic self, computed

as the welfare level attained in a best-case scenario, and that of a pessimistic self,

computed as the welfare level attained in a worst-case scenario, rank f above g. Our

comparison criterion involves multiple priors, as best and worst cases are determined

among sets of probability distributions, and is, generically, less conservative than

Bewley preferences and twofold multi-prior preferences, the two ambiguity models

that are closest to ours.1
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1 Introduction

The complexity of economic decisions is likely to result in agents’ inability or unwillingness

to decide over the (possibly uncertain) options they are supposed to compare. We propose

and characterize an incomplete decision criterion that captures in a new way agents’

behavior in the face of Knightian uncertainty.2

We study preferences over acts f : S → X, which are mappings from states of the

world to outcomes, and we introduce and axiomatize preferences admitting the following

representation:

f ≻ g ⇐⇒

minp∈C
∫
u(f)dp > minp∈C

∫
u(g)dp

maxp∈D
∫
u(f)dp > maxp∈D

∫
u(g)dp

,

where u is a numerical representation of preferences over the outcome space (unique up

to affine transformation) and C and D are two non-disjoint (convex compact) sets of

probability distributions over the state space, interpreted as sets of different scenarios.

Thus, a decision maker (DM) following such a decision criterion ranks act f above act g

if and only if f provides higher expected utility than g in the worst-case scenario in C as

well as in the best-case scenario in D. We shall give special attention in our analysis to

the more transparent case in which C = D.

Our criterion is based on the conjunction of an optimistic (or ambiguity-seeking)

assessment and of a pessimistic (or ambiguity-averse) assessment.3 In this perspective,

we interpret a decision maker with such a preference as requiring that her optimistic self

and her pessimistic self be unanimous for her to rank some act above another one. That

is why we refer to a preference relation admitting such a representation as a unanimous

dual-self preference, using a similar formulation to Chandrasekher et al. (2022).4

Recently, both within the behavioral mechanism design literature and within the de-

cision theory literature, alternative models to standard expected utility, involving com-

parisons of options in terms of best-and-worst scenarios, have aimed at capturing the

DM’s inability to engage in contingent reasoning (Li (2017), Troyan and Morrill (2020),

2Knight (1921).
3As C and D are not disjoint, the expected utility in the best-case scenario is higher.
4In which dual-self expected utility is introduced.
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Echenique et al. (2022)).5 The conjunction of a best-case evaluation and of a worst-case

evaluation at work in our criterion is akin to the one at work in the notion of obvious

manipulations (Troyan and Morrill (2020)), defined for revelation games in which the

uncertainty faced by an agent concerns others’ messages. Thus, this work may be seen

as a generalisation of the intuition explored in Troyan and Morrill (2020) to a decision

theoretic framework involving multiple priors, just as Echenique et al. (2022) may be seen

as such a generalisation of the intuition behind Li’s notion of obvious strategy-proofness

(Li (2017)). Consequently, our criterion is, generically, less conservative than the one of

Echenique et al. (2022) (see Proposition 1), and, in particular, it is monotonic: an act

which state-by-state dominates an other one must be ranked above.

Our axiomatic approach aims at enriching the analysis of incomplete preferences in

non-deterministic environments. As Aumann (1962) acknowledged6, the incompleteness

of the criteria agents might use is a prevalent aspect of real-world decision-making, all the

more so when uncertainty is involved. Yet, the preferences we characterize induce a partial

order, reflecting, through the unanimity requirement imposed on the optimistic and the

pessimistic assessments, the necessity to have sufficient conviction when comparing acts.

Our axiomatization maintains the assumption that preferences are complete over constant

acts, deemed as the simplest ones. It also imposes, as in Bewley (2002), the standard

monotonicity property we already mentioned, and the classical C-independence axiom

introduced by Gilboa and Schmeidler (1989).7 The incompleteness of unanimous dual-

self preferences is rooted in two axioms. The first one (see Axiom 6), underscores the role

of constant acts as references for decision making: if the DM is unable to compare act g

with constant act x whenever she is unable to compare x to f , then she is not able to

compare f and g. Importantly, this axiom is satisfied by the vast majority of incomplete

criteria defined on single acts proposed in the literature. According to Axiom 7, if i) the

DM cannot compare f to the constant x, while she declares x more desirable than g and,

on the other hand, ii) she cannot compare g to the constant act y, while she declares f

more desirable than y, then she declares f more desirable than g.

A salient feature of our approach is that we endogenously derive, from the DM’s

5That is, their inability to comprehensively understand how the underlying state space determines the
outcomes yielded by each option.

6“Of all the axioms of utility theory, the completeness axiom is perhaps the most questionable. Like
others of the axioms, it is inaccurate as a description of real life; but unlike them, we find it hard to
accept even from a normative viewpoint.”

7We also require the convexity of both lower and upper contour sets at constant acts, a property which
was introduced in Echenique et al. (2022).

3



incomplete preference, the two complete preference relations interpreted as the preferences

of different selves. In addition, these two preference relations have intuitive definitions

and may be considered independently from the minmax and maxmax representations that

we eventually obtain (see subsections 3.1.2 and 3.1.3).

In order to account for typical situations in which agents have to choose between two

options, even if they lack evidence to rank them, we study the completion of unanimous

dual-self preferences. We identify conditions on this extension under which it admits an

α-maxmin expected utility representation. To the best of our knowledge, the α-maxmin

expected utility model is, among the theoretical attempts to incorporate empirical findings

about “mixed attitudes”8 toward ambiguity (see Trautmann and van de Kuilen (2015)

for a survey), the one that has received the most attention.

Recently, Frick et al. (2022) provided a characterization of this model based on the

objective/subjective rationality framework of Gilboa et al. (2010): we follow the same

path and obtain α-maxmin expected utility criteria as the subjective invariant biseparable

complete extensions of objective unanimous dual-self preferences.

Finally, we apply this new criterion in a context where decision are made on the basis

of experts’ opinions, which covers, for example, situations in which the DM is in charge of

deciding complex fiscal or environmental policies. We then propose and axiomatize a rule

for aggregating diverse and potentially conflicting opinions from a panel of experts, under

the assumption that both the DM and the experts have unanimous dual-self preferences.

Our paper is organized as follows: we define the formal framework and introduce our

criterion in Section 2. In Section 3, we give the main representation result and explore

the case in which the sets of scenarios used in the optimistic and in the pessimistic

assessment are the same. We compare, in Section 4 , the degree of incompleteness of our

criterion to that of Bewley preferences and of twofold preferences, and we provide a way

to compare the ambiguity attitudes of two unanimous dual-self preferences. In Section

5, we investigate the completion of our decision criterion. Section 6 is dedicated to the

problem of aggregating experts’ opinions, under the assumption that both the DM and

experts have unanimous dual-self preferences. The conclusions are presented in Section

7. All proofs can be found in the appendix.

8By this expression, we refer to the general idea, supported by experimental evidence, that agents do
not display complete aversion to ambiguity, nor complete preference for ambiguity.
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1.1 Related literature

This paper contributes to the existing decision-theoretic literature by introducing prefer-

ences that can accommodate a broader range of attitudes towards ambiguity. The decision

criterion we axiomatize builds upon the idea of a dual-self preference in which the eval-

uations of a pessimistic (or uncertainty-averse) self and of an optimistic (or uncertainty-

seeking) self are compared. In recent works, Chandrasekher et al. (2022) and Xia (2020)

have provided axiomatizations for preferences involving two selves, called by the former

dual-self expected utility (DSEU). Their representation differs from ours in that the agent’s

final decision is to be interpreted as the result of a specific leader-follower game between

an optimistic self and a pessimistic self, whereas, in our representation, it is induced by

a requirement of unanimity imposed by the agent herself on the assessments of her two

selves.

Our representation is also motivated by the concept of obvious manipulation proposed

in the context of mechanism design by Troyan and Morrill (2020). A revelation mechanism

is said to be non-obviously manipulable if, for any agent and any potential untruthful

report from her, revealing her own type leads to a more desirable outcome in both of the

following cases: when the others’ reports are the most favourable to her, and when they

are the least favourable. In our model, in the same spirit, a default option —such as an

untruthful report in the previous example— is only abandoned for an alternative if this

alternative leads to preferred outcomes in both the best and the worst scenarios among

given sets of probability measures.

The relation of our contribution to the concept of obvious manipulation mirrors that of

Echenique et al. (2022) to the concept of obvious dominance, due to Li (2017): informally,

when the set of scenarios according to which all acts are evaluated is the simplex, act f is

preferred to act g by a twofold multi-prior preference if and only if f obviously dominates

g, and, on the other hand, f is preferred to g by a unanimous dual-self preference if and

only if f dominates g in the sense of Troyan and Morrill (2020).9 We explore in more

details throughout the paper the connection between our paper and Echenique et al.

(2022).

Unanimous dual-self preferences define a partial order on acts. Pioneering work by Au-

mann (1962), Bewley (2002) and Dubra et al. (2004) studied the representation of incom-

plete preferences under risk and uncertainty. Incomplete preferences in non-deterministic

9With this same set of scenarios, one can also recover the concept of strategy-proofness from Bewley
preferences (Bewley (2002)).
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environments have been the object of a growing literature: see, for example, Nascimento

and Riella (2011) Galaabaatar and Karni (2012), Efe et al. (2012), Faro (2015), Minardi

and Savochkin (2015), Hill (2016), Karni (2020), Cusumano and Miyashita (2021) and

Echenique et al. (2022). We contribute to this body of research by introducing a novel

axiomatic model, differing from previous approaches in that it characterizes incomplete

preferences through the comparison of the best and worst potential outcomes associated

with each alternative.

In line with several recent papers (Kopylov (2009), Cerreia-Vioglio (2016), Faro and

Lefort (2019), Grant et al. (2021)), we complete our approach by introducing our decision

criterion in the objective and subjective rationality framework, proposed by Gilboa et al.

(2010) —referred to as GMMS in the following. The GMMS approach demonstrates

how the Knightian decision model presented by Bewley (2002) and the maxmin expected

utility model developed by Ghirardato et al. (2004) complement each other, and can be

analyzed in a unifying model in which the agent’s decision involves both an objective

preference relation and a subjective one, the latter being an order extension of the former.

Our paper establishes a representation in which the subjective relation follows the α-

maxmin model, as in Frick et al. (2022), while the objective relation has a unanimous

dual-self representation, based on a simple extension property. Chateauneuf et al. (2024)

identify conditions under which the aggregation of two exogenous preference relations,

representing the preferences of two selves, takes the α-maxmin form.

2 Setup and representation

2.1 Model

Our analysis is conducted in the classical framework proposed by Anscombe and Aumann

(1963). Uncertainty is modelled through a set S of states of the world, endowed with an

algebra Σ of subsets of S called events, and a non-empty set of consequences X, which

is a non-singleton convex subset of a real vector space. A simple act is defined as a

function f : S → X which takes finitely many values and is measurable with respect to

Σ; we denote by F the set of all simple acts. The mixture of two simple acts f and g,

for any α ∈ [0, 1], denoted by αf + (1 − α)g, is then defined by setting, for each s ∈ S,

[αf + (1− α)g](s) = αf(s) + (1− α)g(s). With the usual slight abuse of notation, for all

x ∈ X, we use x to denote the constant act defined by fx(s) = x for all s ∈ S. We use

∆ to denote the set of all finitely additive probability distributions on (S,Σ), endowed
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with the weak* topology.10 We refer to a measure p ∈ ∆ as a scenario according to which

simple acts are evaluated.

We consider a DM whose preference is represented by a binary relation ≻ ⊆ F × F .

It is a partial ranking over simple acts and we use the standard notation f ≻ g to denote

(f, g) ∈≻. If f ⊁ g and g ⊁ f , we write f 1 g, and say that f and g are incomparable.11

We interpret f ≻ g as reflecting the fact that the DM considers that f is more desirable

than g with sufficient conviction. In other words, in each pairwise comparison, one act (g

in the previous notation) has the role of a default that would be abandoned only if the

DM had enough reasons to believe that the alternative performs better.

We use the standard notation by denoting the set of vectors whose k elements are

non-negative by Rk
+, the set of vectors whose k elements are positive by Rk

++, for any

natural number k. For a given set A, |A| denotes the cardinality of A.

2.2 Unanimous dual-self preferences

Our representation involves multiple priors:12 the DM has a set of relevant beliefs accord-

ing to which she evaluates acts.

Definition 1. A binary relation ≻ is a unanimous dual-self preference if

f ≻ g ⇐⇒

minp∈C
∫
u(f)dp > minp∈C

∫
u(g)dp

maxp∈D
∫
u(f)dp > maxp∈D

∫
u(g)dp

,

where u is an affine function defined on X, and C and D are two compact and convex

subsets of ∆ with C ∩D ̸= ∅.
The representation is concordant if C = D.

We sometimes write that ≻ admits the representation (u,C,D) to refer to the unan-

imous dual-self representation given in Definition 1. We obtain in our axiomatization

the uniqueness up to affine transformation of u, and the uniqueness of C and D. We

10The set of finitely additive bounded measures on (S,Σ) is the dual of the set of all measurable real-
valued bounded functions on (S,Σ). Thus the weak* topology on ∆ is defined according to the following
convergence notion: we say that a sequence {pn} of elements of ∆ converges to p ∈ ∆ if for all measurable
bounded function φ : S → R,

∫
φdpn converges to

∫
φdp.

11Accordingly, we say that f and g are comparable if either f ≻ g or g ≻ f .
12Etner et al. (2012) and Gilboa and Marinacci (2016) both provide a review of the ways in which

ambiguity, and ambiguity attitudes, have been modeled in order to offer alternatives to the traditional
Bayesian framework. Multiple prior models stand out as one of the main lines of research.
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sometimes write, then, as a shortcut, that ≻ admits the unique representation (u,C,D).13

Take such preference relation ≻, with representation (u,C,D). A simple act f is

preferred to a simple act g if and only if f gives a higher expected utility than g when they

are evaluated according to their best-case scenario inD, and gives a higher expected utility

than g when they are evaluated according to their worst-case scenario in C. Accordingly,

the DM evaluates any simple act f in terms of the extreme points of the range {
∫
u(f)dµ :

µ ∈ C ∪ D} of possible expected utility levels. As C and D are non-disjoint, compact

and convex sets, we will say that f induces the interval R(f) = {
∫
u(f)dµ : µ ∈ C ∪D}.

Consider another simple act g ∈ F and suppose that R(f) = [a, b] and R(g) = [c, d].

Then f is preferred to g if and only if a > c and b > d. As is the case with several criteria

proposed in decision theory and mechanism design, such as the one underlying the notion

of non-obvious manipulability (Troyan and Morrill (2020) ), a DM with unanimous dual-

self preferences only considers the range of evaluations a given act may result in, and

focuses on the extreme cases: the best-case scenario, on which an optimistic evaluation

of the act would be based, and the worst-case scenario, on which a pessimistic evaluation

would be based.

Our interpretation in terms of multiple selves is reminiscent of that of dual-self ex-

pected utility, characterized by Chandrasekher et al. (2022), in which two conflicting forces

influencing the DM’s evaluation, Optimism and Pessimism, play a sequential game: first,

Optimism chooses a set of beliefs with the goal of maximizing the DM’s expected util-

ity, then Pessimism chooses a belief from the set chosen by Optimism with the goal of

minimizing expected utility. The representation we derive do involve optimistic and pes-

simistic selves, but our criterion does not result from their strategic interaction. For our

DM to consider with sufficiently strong conviction that act f is more desirable than act g,

it is necessary, and sufficient, that her optimistic self and pessimistic self, be unanimous

over the ranking of f and g.14

At this point, it is interesting to describe how the way ranges are compared according

to unanimous dual-self preferences can be formally related to the way in which they are

compared according to twofold preferences, introduced and axiomatized by Echenique

et al. (2022).

Definition 2. (Echenique et al. (2022)) A binary relation ≻ is a (multi-prior) twofold

13As opposed to writing that ≻ admits representation (u,C,D), where u is unique, up to affine trans-
formation, and C and D are unique.

14Thus, there is, a priori, no formal connection between the two models.
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preference if

f ≻ g ⇐⇒ min
p∈C

∫
u(f)dp > max

p∈D

∫
u(g)dp

where u is an affine function defined on X, C and D are two compact and convex subsets

of ∆ with C ∩D ̸= ∅. The representation is said concordant if C = D.15

Consider ≻1 a unanimous dual-self preference and ≻2 a twofold preference with the

same representing utility function u onX and the same set of scenarios C,D ⊆ ∆. For any

two (not necessarily closed) real intervals I and I ′, we say that I lies above I ′ whenever

u > v for any u ∈ I, v ∈ I ′. One has f ≻2 g if and only if the closed interval R(f) lies

above the closed interval R(g), and f ≻1 g if and only if R(f)\R(g) lies above the interval
R(g) \ R(f). In words, f ≻2 g if and only if any attainable evaluation from f is greater

than any attainable evaluation from g, while f ≻1 g if and only if any evaluation that is

attainable from f but not from g is larger than any evaluation that is attainable from g

but not from f .

When the preference ≻ is not concordant, different collections of scenarios are con-

sidered under the optimistic evaluation and under the pessimistic one. This discrepancy

reflects the difference between the degree of preference for uncertainty of the optimistic

evaluation and the degree of aversion to uncertainty of the pessimistic one. We explore

this interpretation on the basis of Proposition 2 in section 4.2.

3 Representation results

3.1 Characterization of unanimous dual-self preferences

3.1.1 Axioms

We now proceed to an axiomatic characterization of unanimous dual-self preferences based

on the following seven axioms. Axioms 1, 2 and 3 are standard, and Axiom 5 has often

been considered as a minimal rationality requirement in decision theory.

Let us insist on the fact that the last five axioms, in which constant acts play a central

role, are all derived from the basic idea that constant acts, because they are simpler, are

relevant reference points for decision making.

15They obtain the uniqueness, up to affine transformation, of u, and the uniqueness of C and D in
their axiomatization.
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Axiom 1. Relation ≻ is asymmetric and transitive, and the restriction of ≻ to X is

non-trivial and negatively transitive.16

Axiom 2. For all triple (f, g, h) ∈ F3, the sets {α ∈ [0, 1] : αf + (1 − α)g ≻ h} and

{α ∈ [0, 1] : h ≻ αf + (1− α)g} are open.

Axiom 3. For all f, g ∈ F , x ∈ X, and α ∈ (0, 1), f ≻ g if and only if αf + (1− α)x ≻
αg + (1− α)x.

The interpretation of the assumptions in Axiom 1 is well-known. In particular, on

X, ≻ is the asymmetric part of a complete and transitive relation. Axiom 2 is the stan-

dard Archimedean continuity condition adopted in models of decision under uncertainty.

Axiom 3 is the independence axiom proposed by Gilboa and Schmeidler (1989) in their

seminal paper as a weakening of the independence axiom at play in the characterization

of subjective expected utility.

Axiom 4. For all x ∈ X, the sets {f ∈ F : f ≻ x} and {f ∈ F : x ≻ f} are convex.

Axiom 4 is identical to Axiom 4 in Echenique et al. (2022). At a high level, it states that

comparisons to a given constant act should not be sensitive to hedging. More precisely,

a relation satisfying Axiom 4 exhibits either aversion for uncertainty or preference for

uncertainty based on whether uncertainty concerns the alternative or the default act.

Recall that for f, g ∈ F , we interpret [f ≻ g] as the comparison in which g is a default

act, so that {f ∈ F : f ≻ x} is the set of acts for which the DM is willing to abandon

the default constant act x. The convexity of {f ∈ F : f ≻ x} is interpreted in terms of

uncertainty aversion: when a reference act x is constant, an act obtained through hedging

between two acts that are preferred to x is always preferred to x. The convexity of

{f ∈ F : x ≻ f} is interpreted in terms of preference for uncertainty: when two uncertain

acts, considered as default acts, are considered worse than an alternative constant act

x, that is, when the DM is willing to abandon each of these default acts for x, then an

act obtained through hedging between the two does not offer a default act that is more

desirable than x.

Axiom 5. For all f, g ∈ F , if f(s) ≻ g(s) for all s ∈ S, then f ≻ g.

According to Axiom 5, if the outcome of an act is considered more desirable than the

outcome of another act in each state of the world, then the first act is preferred to the

second one
16Negative transitivity of ≻ means that for all x, y, z ∈ X, if x ⊁ y and y ⊁ z then x ⊁ z.
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Axiom 6. For all f, g ∈ F , if for all x ∈ X, f 1 x implies g 1 x, then f 1 g.

Remark 1. Almost all (the asymmetric part of) the incomplete criteria comparing single

acts mentioned in Section 1.1, that is, almost all the incomplete criteria defined in a

classical Anscombe-Aumann framework mentioned in Section 1.1, satisfy Axiom 6. More

precisely, the (asymmetric part of) the criteria proposed in Bewley (2002), Nascimento

and Riella (2011), Efe et al. (2012), Faro (2015), Cusumano and Miyashita (2021) and

Echenique et al. (2022) all satisfy Axiom 6 (see the appendix).17

This fact is not surprising: Axiom 6 underscores the role of constant acts as reference

acts based on which comparisons of more complex acts are made; and this view is vastly

endorsed in the literature. According to this axiom, for the DM to express a preference

between acts f and g, it is necessary that there exist a constant act x that the DM prefers

to one of these acts, while she cannot compare x, with sufficient conviction, with the other

act.18

Axiom 7. For all f, g ∈ F , and for all x, y ∈ X, if f 1 x, g 1 y, x ≻ g, and f ≻ y then

f ≻ g.

While the DM cannot compare f to the constant x, she declares x more desirable

than g. On the other hand, while she cannot compare g to the constant act y, she

declares f more desirable than y. Axiom 7 implies that in the presence of such consonant

conclusions as to the comparison of f and g to constant acts x and y, the DM considers

f , with sufficient conviction, more desirable than g.

We sometimes refer to the classical Axioms 2, 3 and 5 as continuity, certainty inde-

pendence and monotonicity.

3.1.2 First characterization theorem

Theorem 1. A binary relation ≻ satisfies Axioms 1-7 if and only if there exist

• an affine function u : X → R, unique up to positive affine transformation,

• a unique pair (C,D) of non-disjoint convex compact subsets of ∆,

17There is one incomplete criterion mentioned in Section 1.1 that is defined on single acts and that
may not satisfy Axiom 6, the one proposed in Hill (2016).

18Note that we do not impose that whenever there exists x ∈ X such that f 1 x and g 1 x, then f 1 g
(which is Axiom 5 in Echenique et al. (2022)). Actually, our criterion does not satisfy such property.
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such that, for all f, g ∈ F ,

f ≻ g ⇔

minp∈C
∫
u(f)dp > minp∈C

∫
u(g)dp

maxp∈D
∫
u(f)dp > maxp∈D

∫
u(g)dp

,

that is, ≻ admits the unanimous dual-self representation (u,C,D), where C and D are

unique, and u is unique up to positive affine transformation.

We now give a brief sketch of the proof and highlight some interesting properties of

≻ that we derive.19 First of all, Axioms 1-3 guarantee that there exists an affine function

u : X → R, unique up to affine transformation, representing ≻ on X.

The proof consists in defining two binary relations on F , denoted ≻p and ≻o, such

that for any f, g ∈ F , f ≻ g if and only if f ≻p g and f ≻o g —we provide the precise

definitions of these relations below. In that perspective, the following two lemmas are

crucial.

Lemma. For all f ∈ F , the set {x ∈ X : x 1 f} is non-empty.

Lemma. For all f ∈ F , and x, y, z ∈ X, if x 1 f , f ≻ y, and z ≻ f , then z ≻ x ≻ y.

This second result has an interesting interpretation. While the DM cannot assert with

sufficient conviction that f is more desirable than the constant act x, she considers with

sufficient conviction that f is more desirable than the constant act y and worse than the

constant act z. We show that in such a case, the DM considers, with sufficient conviction,

that z is more desirable than x, and that x is more desirable than y.

From the original relation ≻, we define two preference relations on F as follows:

g ≻p f ⇐⇒ g ≻ x and x 1 f for some x ∈ X,

g ≻o f ⇐⇒ x 1 g and x ≻ f for some x ∈ X.

The subscripts p and o are used to denote respectively a pessimistic and an optimistic

assessment, based on ≻, where these two terms are justified given the way the incompa-

rability to a constant act is treated. Let us describe the interpretation of ≻p: this relation

is pessimistic in the sense that for the default act f , whenever there is a constant act

x such that f cannot be compared with sufficient conviction to x, while g is considered

more desirable than x with sufficient conviction, then ≻p declares f to be worse than g.

19The following lemmas are not presented here in the order in which they are proved.
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We then proceed by showing that ≻p and ≻o are asymmetric and negatively transitive.

This enables us to define ∼p by f ∼p g if and only if f ⊁p g and g ⊁p f , for all f, g ∈ F ,

and to define ≿p by f ≿p g if and only if either f ≻p g or f ∼p g, for all f, g ∈ F . We

define in the same way ∼o and ≿o. Then it is clear that ≿p and ≿o are weak orders,20 and

we show that they are continuous and monotone, that they satisfy the classical properties

of certainty independence, and, respectively, aversion to ambiguity and preference for

ambiguity.21

As a consequence, ≿p can be represented by the function f 7→ minp∈C
∫
up(f)dp, and

≿o can represented by the function f 7→ maxp∈D
∫
uo(f)dp, where C and D are non-empty

convex compact subsets of ∆, and up and uo are two affine functions on X. We conclude

that there is no loss of generality in assuming up = uo = u, and that C ∩D ̸= ∅, using the

separating hyperplane theorem on these subsets of ∆ endowed with the weak* topology.

Note that in this sketch of proof, the relation between ≻ and the two weak orders

≻p and ≻o is established before the minmax and maxmax representations of ≻p and ≻o:

Axioms 1-3 and Axioms 5-7 are necessary and sufficient for a general representation that

we describe in the next section.

3.1.3 Intermediary representation result

When ≻ satisfies Axioms 1-3 and Axioms 5-7, we can still define the pessimistic and

optimistic relations ≻p and ≻o on F ,

g ≻p f ⇐⇒ g ≻ x and x 1 f for some x ∈ X,

g ≻o f ⇐⇒ x 1 g and x ≻ f for some x ∈ X,

and obtain that f ≻ g if and only if f ≻p g and f ≻o g.

We take the terminology used in Ghirardato et al. (2004) and Frick et al. (2022).

Accordingly, I : RS → R is said to be constant-linear if, for all φ ∈ RS, a ∈ R+, and

b ∈ R, I(aφ + b) = aI(φ) + b, where, with a slight abuse of notation, we use b to denote

the constant function ϕ : s ∈ S 7→ b ∈ R. It is said monotonic if it weakly preserves the

usual partial order of RS.

Theorem 2. A binary relation ≻ satisfies Axioms 1-3 and Axioms 5-7 if and only if there

exist

20They are non-trivial asymmetric and negatively transitive binary relations.
21Definitions of these properties for weak orders are provided in the appendix.
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• an affine function u : X → R, unique up to positive affine transformation,

• a unique pair of monotonic constant linear functionals Ip, Io : RS → R,

such that, for all f, g ∈ F ,

f ≻ g ⇐⇒

Ip(u(f)) > Ip(u(g))

Io(u(f)) > Io(u(g))
.

The proof of this theorem follows from the proof of Theorem 1 and Lemma 6, used in

the proof of Theorem 4 below.

3.2 Characterization of concordant unanimous dual-self prefer-

ences

3.2.1 Axioms

The necessary and sufficient conditions identified in Echenique et al. (2022) for the identity

C = D to hold in their twofold multiprior preference representation are also necessary

and sufficient in our representation.22 Before introducing them, let us specify that, as

suggested in the sketch of the proof of Theorem 1, when ≻ satisfies Axioms 1-3, we define

on X the relation ≿ by x ≿ y if and only if y ⊁ x for all x, y ∈ X. Clearly, ≿ on X is

asymmetric and negatively transitive; and 1 is equivalent to ∼, the symmetric part of ≿,

on X.

We use the notion of complementary acts (Siniscalchi (2009)) to identify compar-

isons that are, under Axioms 1-7, characteristic of the uncertainty aversion of the agent’s

pessimistic self, and of the preference for uncertainty of her optimistic self, respectively.

Simple acts f and g are complementary if they perfectly hedge against each other in the

sense that their equal-weight-mixture is equivalent to a constant act:

1

2
f(s) +

1

2
g(s) ∼ 1

2
f(s′) +

1

2
g(s′) for all s, s′ ∈ S.

Axiom 8. If f and g in F are complementary, then f ≻ 1
2
f + 1

2
g implies 1

2
f + 1

2
g ≻ g.

Consider two complementary f, g ∈ F , and a preference≻ with representation (u,C,D)

on F . Assume f ≻ 1
2
f + 1

2
g, as in Axiom 8 and let x ∈ X denote a constant act such that

22The proof of the following result is a direct adaptation of the proof of Proposition 1 in their paper.
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x ∼ 1
2
f + 1

2
g. If, in addition, g ≻ 1

2
f + 1

2
g, then f ≻ x and g ≻ x, and thus 1

2
f + 1

2
g ≻ x;

a contradiction.

In other words, if f ≻ 1
2
f + 1

2
g, then either 1

2
f + 1

2
g 1 g or 1

2
f + 1

2
g ≻ g. Axiom 8

requires that the second case hold, and this requirement is interpreted as a consequence

of the simplicity of constant acts. Indeed, this second case implies f ≻ g, so Axiom 8

states that whenever f ≻ 1
2
f + 1

2
g, one has f ≻ g, that is, it states that it should always

be easier for the DM to assess whether f is more desirable than the essentially constant

act 1
2
f + 1

2
g than to assess whether f is more desirable than g.

The interpretation of Axiom 9 is similar: it states that for complementary acts f, g ∈
F , it should always be easier for the DM to assess whether the essentially constant act
1
2
f + 1

2
g is more desirable than g than to assess whether f is more desirable than g.

Axiom 9. If f and g in F are complementary, then 1
2
f + 1

2
g ≻ g implies f ≻ 1

2
f + 1

2
g.

3.2.2 Second characterization theorem

Theorem 3. The following statements hold:

(i) A unanimous dual-self preference ≻, with unique representation (u,C,D), satisfies

Axiom 8 if and only if D ⊆ C.

(ii) A unanimous dual-self preference ≻, with unique representation (u,C,D), satisfies

Axiom 9 if and only if C ⊆ D.

In particular, a binary relation ≻ satisfies Axioms 1-9 if and only if there exist

• an affine function u : X → R, unique up to positive affine transformation,

• a unique convex compact subset of ∆, denoted C, such that, for all f, g ∈ F ,

f ≻ g ⇐⇒

minp∈C
∫
u(f)dp > minp∈C

∫
u(g)dp

maxp∈C
∫
u(f)dp > maxp∈C

∫
u(g)dp

.

When ≻ admits a concordant representation, acts are evaluated according to the

minimum and the maximum expected utility level attained on a common set of scenarios.

On the other hand, when ≻ satisfies both Axiom 8 and 9, for any simple complementary

acts f and g, f ≻ 1
2
f + 1

2
g if and only if 1

2
f + 1

2
g ≻ g. In other words, for complementary

acts, it is always as easy to determine whether their equal-weight-mixture is more desirable
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than one of them as it is to determine whether one of them is more desirable than the

mixture.

4 Comparison of incomplete criteria

4.1 Degree of incompleteness

We have stated that unanimous dual-self preferences are generically less conservative than

Bewley preferences and twofold preferences. The criterion we use to determine whether a

binary relation is more conservative than another one pertains to their respective degree

of incompleteness.

Definition 3. Given two preference relations ≻1 and ≻2 on F , we say that ≻1 is more

conservative than ≻2 if ≻2 is an extension of ≻1, that is, for all f, g ∈ F ,

f ≻1 g implies f ≻2 g.

Definition 2 above introduces twofold preferences. Bewley preferences have the follow-

ing form:

Definition 4. (Bewley (2002)) A binary relation ≻ is a (multi-prior) Bewley preference

if

f ≻ g ⇐⇒
∫
u(f)dp >

∫
u(g)dp for all p ∈ C,

where u is an affine function defined on X, C is a non-empty compact and convex subset

of ∆.

Similarly to the expression we used for our criterion, we will say that the the twofold

preference ≻T admits the unique representation (u,CT , DT ), and that the Bewley prefer-

ence ≻B admits the unique representation (u,CB) to refer to the fact that u is unique up

to affine transformation, and CT , DT and CB are unique.

The next proposition identifies necessary and sufficient conditions under which a unan-

imous dual-self preference relation is an extension of a Bewley or of a twofold preference

relation.

Proposition 1. Let ≻U be a unanimous dual-self preference with unique representa-

tion (u,CU , DU). Let ≻T be a twofold multiprior preference with unique representation

(u,CT , DT ). Let ≻B be a Bewley preference with unique representation (u,CB). Then,
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(i) the preference relation ≻B is more conservative than ≻U if and only if CU ∪DU ⊆
CB;

(ii) the preference relation ≻T is more conservative than ≻U if and only if CU ⊆ CT

and DU ⊆ DT .

Remark 2. A direct consequence of this proposition and Proposition 4 in Echenique et al.

(2022) is that if CU ∪DU ⊆ CB ⊆ CT ∩DT , in particular if CU = DU = CB = CT = DT ,

then ≻T is more conservative than ≻B, which is more conservative than ≻U .

4.2 Ambiguity attitudes

We are able to compare ambiguity attitudes displayed by different unanimous dual-self

preferences using the classical comparative statics notions of Ghirardato and Marinacci

(2002).

Definition 5. Given two preference relations ≻1 and ≻2 on F ,

(i) ≻1 is more ambiguity averse than ≻2 if, for all f ∈ F and x ∈ X, f ≻1 x implies

f ≻2 x.

(ii) ≻1 is more ambiguity loving than ≻2 if, for all f ∈ F and x ∈ X, x ≻1 f implies

x ≻2 f .

An agent is more ambiguity averse than another one if she is less inclined to choose an

uncertain act f over a constant act x. On the other hand, an agent is more uncertainty

loving than another one if she is more inclined to stick to an uncertain act f than to switch

to a constant act x. The next result characterizes ambiguity attitudes for unanimous dual-

self preferences.

Proposition 2. Let ≻1 and ≻2 be two unanimous dual-self preference relations with

unique representation (u,C1, D1) and (u,C2, D2), respectively. Then,

(i) ≻1 is more ambiguity averse than ≻2 if and only if C2 ⊆ C1.

(ii) ≻1 is more ambiguity loving than ≻2 if and only if D2 ⊆ D1.

For a unanimous dual-self representation (u,C,D), the two sets of priors C and D

represent the level of pessimism and optimism related to the DM’s ambiguity attitudes.

More precisely, the relationship C2 ⊆ C1 means that, in the worst scenario, the level
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of welfare attained by the agent if she has preference relation ≻1 is lower than the one

attained if she has preference relation ≻2. Similarly, D2 ⊆ D1 means that, in the best

scenario, the level of welfare attained by the agent if she has preference relation≻1 is higher

than the one attained if she has preference relation ≻2. Proposition 2 then makes precise

the relation between the DM’s degree of optimism and pessimism and her ambiguity

attitudes: an agent is more ambiguity averse (respectively more ambiguity loving) than

an other one if and only if she is more pessimistic (respectively more optimistic) when

facing ambiguity.

Importantly, based on Proposition 2 i), by comparing the concordant preference ≻
with representation (u,C,C) to the non-concordant preference ≻1 with representation

(u,C1, C), with C1 ⊂ C, we can say that ≻1 is more ambiguity averse than it is ambiguity

loving. Similarly, the non-concordant representation ≻2 with representation (u,C,D2),

with D2 ⊂ C, can be said to be more ambiguity loving than it is ambiguity averse. Then,

a DM with concordant preferences is as ambiguity loving as she is ambiguity averse, or,

in other words, her pessimistic self is as pessimistic as her optimistic self is optimistic.

We end this subsection by briefly discussing the relation between the degree of conser-

vatism of a unanimous dual-self preference relation and the attitude towards ambiguity

that it displays.

It is easy to see that if ≻1 and ≻2 are unanimous dual-self preferences, and if ≻1 is

more conservative than ≻2, then ≻1 is both more ambiguity averse and more ambiguity

loving than ≻2. Does the converse statement hold ? This question is all the more natural

that if ≻1 and ≻2 are twofold preferences, then ≻1 is more conservative that ≻2 if, and

only if, ≻1 is more ambiguity averse and more ambiguity loving than ≻2.
23 The following

example shows that the answer is negative for unanimous dual-self preferences.

Let ≻1 and ≻2 be two unanimous dual-self preferences with representations (u,C1, D1)

and (u,C2, D2), respectively. We identify conditions under which C2 ⊆ C1 and D2 ⊆ D1,

but ≻1 is not more conservative than ≻2. Consider f, g ∈ F such that there are s1, s2 ∈ S

satisfying 
u(f(s1)) > u(g(s1))

u(f(s2)) < u(g(s2))

u(f(s)) = u(g(s)) for all s ̸= s1, s2.

Assume that the utility function u is such that u(f(s1)) = u(g(s2)) = 1 and u(f(s2)) =

23See Corollary 1 in Echenique et al. (2022).
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u(g(s1)) = 0. Define p1, p2 and p3 as follows
p1(s1) =

1
3
, p1(s2) =

2
3
, p1(s) = 0 ∀s ̸= s1, s2

p2(s1) = 1, p2(s2) = 0, p2(s) = 0 ∀s ̸= s1, s2

p3(s1) =
2
5
, p3(s2) =

3
5
, p3(s) = 0 ∀s ̸= s1, s2.

Now let C1 = C2 = {p2}, D1 = co({p1, p2}) and D2 = co({p1, p3}), where co denotes the

operator which associates to any subset of ∆ its closed convex hull in ∆. One readily

obtains:

min
p∈C1

∫
u(f)dp = 1 > 0 = min

p∈C1

∫
u(g)dp

max
p∈D1

∫
u(f)dp = 1 >

2

3
= max

p∈D1

∫
u(g)dp

max
p∈D2

∫
u(f)dp =

2

5
<

2

3
= max

p∈D2

∫
u(g)dp,

that is, f ≻1 g but f ⊁2 g.

5 Generalized α-maxmin expected utility

We now explore the extension of unanimous dual-self preferences to complete preferences.

Building on the objective-subjective relations framework proposed in Gilboa et al. (2010),

we obtain an objective rationality foundation of α-maxmin expected utility based on

unanimous dual-self preferences. Accordingly, the DM’s decision process involves two

preference relations on F ; we denote them ≻ and ≻∗. The relation ≻ represents the

comparisons the DM makes with sufficient conviction, and corresponds to the objective

relation in the model of Gilboa et al. (2010). In line with the motivation of this paper,

it may be incomplete. On the other hand, ≻∗ represents the rankings that the DM is

compelled to make under the burden of choice, and corresponds to the subjective relation

in their model. In this context, ≻∗ is a complete extension of ≻.

Our approach now differs from other foundations of generalised α-maxmin expected

utility in that we will assume that ≻ is a unanimous dual-self preference.

A weak order on F , i.e., a non-trivial asymmetric and negatively transitive binary

relation on F , satisfying Axioms 2, 3 and 5, is refered to in the literature as invariant

biseparable preference. Such order satisfies the axioms characterizing expected utility,
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apart from the independence axiom, which is weakened to the certainty independence

property introduced in Gilboa and Schmeidler (1989). The preference relation ≻∗ will be

assumed invariant biseparable. In addition, as we already mentioned, we will require that

≻∗ be a completion of ≻, that is, that the pair (≻,≻∗) satisfy the following property.

Extension. The pair (≻,≻∗) satisfies the extension property if for all f, g ∈ F , f ≻∗ g

whenever f ≻ g.

This property corresponds to a special case of Definition 3 in which one of the prefer-

ence relation is complete.

Definition 6. A preference relation ≻ on F admits an α-maxmin expected utility repre-

sentation if there exist α ∈ [0, 1], two non-disjoint compact convex subsets C and D of

∆, and a non-constant affine function u : X → R such that for all f, g ∈ F ,

f ≻ g ⇐⇒ αmin
p∈C

∫
u(f)dp+ (1− α)max

p∈D

∫
u(f)dp

> αmin
p∈C

∫
u(g)dp+ (1− α)max

p∈D

∫
u(g)dp.

We will refer to such representation as a (u,C,D, α) representation.

Theorem 4. The following conditions are equivalent when ≻ is a unanimous dual-self

preference with unique representation (u,C,D):

(i) ≻∗ is an invariant biseparable preference and the pair (≻,≻∗) satisfies the extension

property.

(ii) ≻∗ admits an α-maxmin expected utility representation (u,C,D, α) in which α is

unique whenever ≻ is not complete.

6 Aggregating the opinion of experts with unani-

mous dual-self preferences

Numerous economic decisions, such as those related to fiscal policy and those addressing

climate change, often hinge on the guidance provided by groups of experts, who frequently

hold conflicting opinions. We explore in this section the issue of the aggregation of con-
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flicting opinions among experts.24 While this topic has received considerable attention

(see, for example, Stone (1961), Crès et al. (2011), Nascimento (2012), Qu (2017), Ama-

rante and Ghossoub (2021), Stanca (2021), and Dong-Xuan (2024)), our contribution lies

in the assumption that both the DM’s and the experts’ preferences are unanimous dual-

self preferences. We propose a novel Pareto condition, stating that if an arbitrary act

falls between two constant acts according to all experts, it does so also for the DM. We

show that this conditions implies than any probability measure (i.e any scenario) deemed

plausible by the DM to assess the worst-case (respectively the best-case) is a weighted

average of probability measures (i.e scenarios) deemed plausible by the experts to assess

the worst-case (respectively the best-case). We also consider a caution axiom, positing

that if some experts are not able to compare an arbitrary act to a constant one, the

DM should also consider these acts incomparable. We show that under this condition,

the DM considers plausible for the worst-case evaluation (respectively for the best-case

evaluation) any weighted average of probability measures deemed by experts as plausible

for the worst-case evaluation (respectively for the best-case evaluation). An obvious im-

plication is that if these two conditions are met, the sets of measures considered by the

DM for both evaluations are the convex hulls of the ones considered by the experts.

We assume that both the DM and experts have unanimous dual-self preferences. Let

N = {1, 2, . . . , n} be a finite set of experts. Expert j ∈ N has a preference ≻j on F . We

use ≻0 to denote the DM’s preference on F . We suppose that, for all i ∈ N∪{0}, agent i’s
preference is a unanimous dual-self preference with unique representation (u,Ci, Di). We

thus assume in particular that there is no diversity of preferences over outcomes, which is

a distinctive element of the theory of the aggregation of opinions, compared to the theory

of the aggregation of preferences.

Axiom 10 (Pareto for comparability). For all f ∈ F and x, y ∈ X, if y ≻i f ≻i x for

all i ∈ N , then y ≻0 f ≻0 x.

Axiom 11 (Caution for incomparability). For all f ∈ F and x ∈ X, if there exists

i ∈ N such that f 1i x, then f 10 x.

We emphasize that these two axioms focus on the comparison of arbitrary acts to

constant acts, these comparisons being simpler than those between two arbitrary acts.

24This approach is different from that of the theory of aggregation of preferences, which focuses on the
diversity of preferences over outcomes. This diversity is ignored here (this statement is made precise in
the following paragraph).
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As we already mentioned, Pareto for comparability asserts that the DM should follow

experts’ unanimous comparisons to constant acts. More precisely, if all experts prefer act

f to a constant act x, the DM should also favor f over x. Symmetrically, if all experts

prefer a constant act y to act f , the DM should also favor y over f

In contrast, caution for incomparability focuses on situations without clear compar-

isons. Based on the idea that the DM wants to rely on experts’ opinions because the

decision problem she is facing is crucial to her, this condition describes a conservative at-

titude when aggregating these opinions. It states that if some experts struggle to compare

act f to constant act x, the DM should treat these acts as incomparable.

For all P ⊆ ∆, we use co(P ) to denote the convex hull of P .

Proposition 3. Suppose that for all i ∈ N ∪ {0}, ≻i is a unanimous dual-self preference

with unique representation (u,Ci, Di).

(i) Pareto for comparability is satisfied if and only if C0 ⊆ co (
⋃n

i=1Ci) and D0 ⊆
co (

⋃n
i=1Di).

(ii) Caution for incomparability is satisfied if and only if co (
⋃n

i=1Ci) ⊆ C0 and co (
⋃n

i=1Di) ⊆
D0.

In particular, when both conditions are met, C0 = co (
⋃n

i=1Ci) and D0 = co (
⋃n

i=1Di).

7 Conclusion

We provided a new perspective on the analysis of incomplete preferences by introducing

a novel decision criterion involving multiple priors, based on a requirement of unanimity

between an optimistic and a pessimistic evaluation.

Our representation of unanimous dual-self preferences is a translation and a generaliza-

tion of the domination concept at work in the notion of obvious manipulations, introduced

by Troyan and Morrill (2020), into a decision theoretic framework involving uncertainty

and ambiguity. Furthermore, based on the model proposed in Gilboa et al. (2010), we

delved into the complete extension of this partial order, and identified conditions under

which the α-maxmin expected utility is the subjective complete extension of an objective

unanimous dual-self preference. Finally, we applied our criterion to the problem of the

aggregation of experts’ opinions.
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Appendix

A Discussion of Axiom 6

It’s easy to see that Axiom 5 in Echenique et al. (2022) implies our Axiom 6: twofold

preferences satisfies Axiom 6. Let us prove that Bewley preferences (Bewley (2002)) also

satisfy Axiom 6.

Let ≻ a Bewley preference relation with representation (u,C). Let x, y ∈ X and

f, g ∈ F satisfying the assumptions of Axiom 6. Consider x ∈ X such that f 1 x.

By definition of Bewley preference, there are p, p′ ∈ C such that
∫
u(f)dp′ ≥ u(x) ≥∫

u(f)dp. Therefore, the set {x ∈ X|f 1 x} is the set {x ∈ X|maxp∈C
∫
u(f)dp ≥

u(x) ≥ minp∈C
∫
u(f)dp}. By continuity, there are x ∈ X and x ∈ X such that u(x) =

maxp∈C
∫
u(f)dp and u(x) = minp∈C

∫
u(f)dp. Then, f 1 x and f 1 x. By Axiom 6,

g 1 x and g 1 x, which implies that there are p1, p2 ∈ C such that

u(x) = min
p∈C

∫
u(f)dp ≥

∫
u(g)dp1, and

u(x) = max
p∈C

∫
u(f)dp ≤

∫
u(g)dp2.

That is, g ⊁ f and f ⊁ g, i.e g 1 f , which ends the proof.

Other incomplete preferences: Basic adaptations of this simple proof lead to the

conclusion that the (asymmetric part of the) criteria proposed by Nascimento and Riella

(2011), Efe et al. (2012), Faro (2015), and Cusumano and Miyashita (2021) satisfy Axiom

6. Let us note that some of these criteria allow for indifferences: generically denoting them

by ≿, we derive a representation of the associated asymmetric part, denoted ≻, by using

the representation of ≿ and defining ≻ by [f ≻ g] if and only if [[f ≿ g] and not[g ≿ f ]]

for all admissible acts f, g ∈ F .

B Proof of Theorem 1

Only-if part. Assume that ≻ satisfies Axioms 1-7.

Consider the restriction of ≻ to X and define ≿ by x ≿ y if and only if y ⊁ x for all

x, y ∈ X. Clearly, ≿ on X is asymmetric and negatively transitive; and 1 is equivalent to

∼ on X. By Axiom 3, for all x, y, z ∈ X, x ≿ y if and only if αx+(1−α)z ≿ αy+(1−α)z.
Thus, by continuity of ≻, there exists an affine function u : X → R, unique up to affine
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transformation, such that x ≿ y if and only if u(x) ≥ u(y). Also, u is non-constant as ≻
is non-trivial.

Let us now introduce intermediary results on which our proof is based.

Lemma 1. For all f ∈ F , and x, y, z ∈ X, if f 1 x, and f ≻ y, and z ≻ f , then

z ≻ x ≻ y.

Proof. We prove x ≻ y, as z ≻ x is similarly shown. Assume x ⊁ y, by contradiction.

Having y ≻ x would contradict f 1 x by the transitivity of ≻. Thus, y ∼ x. There are

three posibilities:

Case 1: There exists x′ ∈ X such that f 1 x′ and x ≻ x′. Then y ≻ x′ since y ∼ x.

So f ≻ y, and y ≻ x′ which implies f ≻ x′, a contradiction.

Case 2: There exists x′ ∈ X such that f 1 x′ and x′ ≻ x. Then, f 1 x′, x ∼ y,

f ≻ y, and x′ ≻ x. Applying Axiom 7, one gets f ≻ x, a contradiction.

Case 3: For all x′ ∈ X such that f 1 x′, x′ ∼ x. Applying Axiom 6 to f and y, one

gets f 1 y, a contradiction.

Lemma 2. 1 satisfies certainty independence.

Proof. Let f, g ∈ F , x ∈ X, and α ∈ (0, 1), the following equivalence relations hold:

f 1 g

⇐⇒ f ⊁ g and g ⊁ f

⇐⇒ αf + (1− α)x ⊁ αg + (1− α)x and αg + (1− α)x ⊁ αf + (1− α)x

⇐⇒ αf + (1− α)x 1 αg + (1− α)x.

The first and the third ones follow from the definition of 1, and the second from the fact

that ≻ satisfies certainty independence (Axiom 3).

Lemma 3. For all f ∈ F and x, y ∈ X, if f ≻ x and x ≿ y, then f ≻ y.

Proof. Let f ∈ F and x, y ∈ X such that f ≻ x and x ≿ y. By contradiction, assume

that f ⊁ y, then either y ≻ f or y 1 f . If y ≻ f , then y ≻ x by transitivity, which

contradicts the assumption that x ≿ y. If y 1 f , it follows from Lemma 1 that y ≻ x; a

contradiction.

Lemma 4. For all f, g ∈ F with f(s) ≿ g(s) for all s ∈ S, and for all x ∈ X, if x 1 f ,

then g ⊁ x; and if x 1 g, then x ⊁ f .
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Proof. Suppose that f(s) ≿ g(s) for all s ∈ S, and suppose by contradiction that there is

x ∈ X such that x 1 f and g ≻ x.25

As ≻ is non-trivial, there are y and z in X such that y ≻ z. From Axiom 3 and

Lemma 2, αf(s) + (1 − α)z ≿ αg(s) + (1 − α)z for all s ∈ S and all α ∈ (0, 1). Let

fα = αf +(1−α)z, gα = αg+(1−α)z, and xα = αx+(1−α)z. Note that fα(s) ≿ gα(s)

for all s ∈ S. Axiom 3 and Lemma 2 imply, for all α ∈ (0, 1),

x 1 f ⇐⇒ xα 1 fα

g ≻ x ⇐⇒ gα ≻ xα.

Besides, Axiom 2 guarantees that for α close enough to 0, y ≻ gα(s) for all s ∈ S.

Now, fix α ∈ (0, 1) such that y ≻ gα(s) for all s ∈ S and define, for all β ∈ (0, 1), fβ ∈ F
by fβ(s) = βfα(s) + (1− β)y for all s ∈ S. As u(fα(s)) ≥ u(gα(s)) and u(y) > u(gα(s)),

fβ(s) ≻ gα(s) for all s ∈ S. In addition, by Lemma 2, xα 1 fα implies βxα+(1−β)y 1 fβ.

Then, by Axiom 5, gα ⊁ βxα + (1 − β)y for all β ∈ (0, 1). However, as gα ≻ xα, if β is

close enough to 1, Axiom 2 implies that gα ≻ βxα + (1− β)y, a contradiction.

Lemma 5. For all f ∈ F , the set {x ∈ X : x 1 f} is non-empty.

Proof. By definition of a simple act, for all f ∈ F , there are x∗ and x∗ in X such

that x∗ ≿ f(s) ≿ x∗ for all s ∈ S. Since f(s) ≿ x∗ for all s ∈ S and x∗ 1 x∗,

Lemma 4 implies that x∗ ⊁ f . One obtains similarly that f ⊁ x∗. Consider the sets

{α ∈ [0, 1] : f ⊁ αx∗ + (1 − α)x∗} and {α ∈ [0, 1] : αx∗ + (1 − α)x∗ ⊁ f} which are

non-empty and closed relative to [0, 1] by the continuity of ≻. Clearly, their union is

[0, 1], and the connectedness of [0, 1] in turn implies that their intersection is non-empty:

there is α∗ ∈ [0, 1] such that α∗x∗ + (1− α∗)x∗ 1 f.

From the original relation ≻, we define two preference relations as follows:

f ≻p g ⇐⇒ f ≻ x and x 1 g for some x ∈ X,

f ≻o g ⇐⇒ f 1 x and x ≻ g for some x ∈ X.

Step 1. ≻p and ≻o are asymmetric and negatively transitive.

We only prove that ≻p has these properties, as the argument for ≻o is similar.

25The conclusion that x ⊁ f when x 1 g follows easily from the same argument by contradiction.
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Assume by contradiction f ≻p g and g ≻p f for some f, g ∈ F . That is, there are

some x, y ∈ X such that f ≻ x, x 1 g, g ≻ y, and y 1 f . By Lemma 1, one concludes

that y ≻ x since f ≻ x and y 1 f and x ≻ y as g ≻ y and x 1 g. This is impossible since

≻ is asymmetric. As a consequence, ≻p is asymmetric.

Now, assume by contradiction that for some f, g, h ∈ F f ̸≻p g, g ̸≻p h, and f ≻p h.

By definition of ≻p, there is x ∈ X such that f ≻ x and x 1 h. Since g ̸≻p h, the following

holds: f ≻ x ≻ g. Let y ∈ X such that g 1 y. From Lemma 1, x ≻ y, implying f ≻ y.

But then, f ≻p g, which is a contradiction. Therefore, ≻p is negatively transitive.

Step 2. f ≻ g if and only if f ≻p g and f ≻o g.

Let us first prove that for f, g ∈ F such that f ≻ g, one has f ≻p g and f ≻o g,

giving the explicit argument exclusively for f ≻p g, as f ≻o g is proved symmetrically.

By contradiction, assume that f ⊁p g, then for all x 1 g, one has f ⊁ x, that is, either

f 1 x or x ≻ f . But if x ≻ f , then x ≻ g by transitivity, which contradicts x 1 g. Thus,

for all x ∈ X, if x 1 g, then x 1 f . By Axiom 6, f 1 g, a contradiction. We have thus

proved f ≻p g.

Suppose now f ≻p g and f ≻o g, and let us show f ≻ g. By definition of ≻p and ≻o,

there exist x ∈ X such that f ≻ x and x 1 g, and y ∈ X such that y 1 f and y ≻ g.

Axiom 7 then implies f ≻ g.

Define ∼p by f ∼p g if and only if f ⊁p g and g ⊁p f , for all f, g ∈ F , and define ≿p

by f ≿p g if and only if either f ≻p g or f ∼p g, for all f, g ∈ F . ∼o and ≿o are similarly

defined. It is clear that ≿p and ≿o are weak orders, i.e., they are complete and transitive.

We say that ≿p (resp. ≿o) is continuous if ≻p (resp. ≻o) is continuous, which is equivalent

to the closedness of {α ∈ [0, 1] : αf+(1−α)g ≿p h} and {α ∈ [0, 1] : h ≿p αf+(1−α)g}.

Step 3. ≿p and ≿o are continuous and satisfy monotonicity and certainty independence.26

We only provide the proof that ≿p is continuous and satisfies monotonicity and cer-

tainty independence, where monotonicity, when allowing for indifference, means that for

all f, g ∈ F such that f(s) ≿p g(s) for all s ∈ S, f ≿p g, and certainty indepen-

dance means that for all f, g ∈ F , all x ∈ X, and all α ∈ (0, 1), f ≿p g if and only if

αf + (1− α)x ≿p αg + (1− α)x.

We first show that ≿p is continuous. Let f, g, h ∈ F and x ∈ X; denote Ax the

set of α ∈ [0, 1] such that αf + (1 − α)g ≻ x and x 1 h. Either Ax is empty or it

26The definition of these properties for a weak order are reminded in the following lines.
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coincides with {λ ∈ [0, 1] : λf + (1− λ)g ≻ x}. Then Ax is open by Axiom 2. Therefore,

{α ∈ [0, 1] : αf + (1 − α)g ≻p h} = ∪x∈XAx is open. Similarly, one can show that

{α ∈ [0, 1] : h ≻p αf + (1− α)g} is open; thus, ≿p is continuous.

Next, we prove that ≿p satisfies monotonicity. Let f, g ∈ F such that f(s) ≿p g(s) for

all s ∈ S, which clearly implies f(s) ≿ g(s) for all s ∈ S. Suppose g ≻p f , which means

that there exists x ∈ X such that g ≻ x and x 1 f . This is a direct contradiction as, by

Lemma 4, for any x′ ∈ X such that x′ 1 f , g ⊁ x′. Thus, f ≿p g.

Lastly, we establish that ≿p satisfies certainty independence. Let f, g ∈ F , x ∈ X,

and α ∈ (0, 1). We first show that f ≿p g implies αf + (1− α)x ≿p αg + (1− α)x. Since

≿p is a weak order, f ≿p g is equivalent to g ⊁p f , which holds if, and only if, for all

y ∈ X such that g ≻ y, f and y are comparable. Under Axiom 3, it is sufficient to prove

that, for all y ∈ X such that αg+(1−α)x ≻ y, αf +(1−α)x and y are comparable. Let

y ∈ X such that αg + (1− α)x ≻ y and suppose by contradiction αf + (1− α)x 1 y.

Claim: For such y ∈ X, there is z ∈ {z : z 1 f} with u(z) = inf{u(z) : z 1 f} such that

y ≿ αz + (1− α)x.

We have shown in Step 2 that there exists z ∈ {z ∈ X : z 1 f} such that u(z) =

inf{u(z) : z 1 f}. Since 1 satisfies certainty independence (Lemma 2), αf + (1− α)x 1

αz + (1− α)x.

We claim y ≿ αz + (1 − α)x. Indeed, if there exists z ∈ X such that z ≻ z, then

it follows from Axiom 3 and Lemma 1 that f ≻ zβ := βz + (1 − β)z for all β ∈ (0, 1).

Using Axiom 3 again yields αf +(1−α)x ≻ αzβ +(1−α)x. It then follows from Lemma

1 that y ≻ αzβ + (1 − α)x for all β ∈ (0, 1). Letting β tend to 1, one concludes, since

u is affine, that y ≿ αz + (1 − α)x. If z ≿ z for all z ∈ X, then αf(s) + (1 − α)x ≿

αz+(1−α)x for all s ∈ S (otherwise, Axiom 3 implies z ≻ f(s), which is a contradiction).

Since αf + (1 − α)x 1 y, Lemma 4 implies αz + (1 − α)x ⊁ y, which is equivalent to

y ≿ αz + (1− α)x.

Since αg + (1− α)x ≻ y and y ≿ αz + (1− α)x, Lemma 3 implies

αg + (1− α)x ≻ αz + (1− α)x,

which is equivalent to g ≻ z by Axiom 3. Hence, by definition of z, g ≻p f , a contradiction.

Therefore, αf+(1−α)x and y are comparable, which yields αf+(1−α)x ≿p αg+(1−α)x.

We now show the converse implication. For α ∈ (0, 1), and any two f, g ∈ F , αf +

(1 − α)x ≿p αg + (1 − α)x if, and only if, for all y ∈ X such that αg + (1 − α)x ≻
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y, αf + (1 − α)x and y are comparable. Let y ∈ X such that g ≻ y, then one has

αg + (1− α)x ≻ αy + (1− α)x by Axiom 3. Thus, αf + (1− α)x and αy + (1− α)x are

comparable, implying that f and y are comparable by Axiom 3. Hence, g ⊁p f , which is

equivalent to f ≿p g. We have proved that ≿p satisfies certainty independence.

Step 4. An agent with preferences ≿p on F is averse to ambiguity, i.e., for all f, g ∈ F ,

f ∼p g implies αf + (1− α)g ≿p f . An agent with preferences ≿o on F loves ambiguity,

i.e., for all f, g ∈ F , f ∼p g implies f ≿o αf + (1− α)g.

We only prove that ≿p displays ambiguity aversion. Let f, g ∈ F such that f ∼p g,

i.e., f ⊁p g and g ⊁p f . In other words, for all x ∈ X with f ≻ x, x is comparable with

g, and for all x ∈ X with g ≻ x, x is comparable with f . Let x ∈ X such that f ≻ x.

If x ≻ g, then f ≻ g, and then, by Step 2, f ≻p g, which is a contradiction; thus, one

must have g ≻ x. This implies {x ∈ X : f ≻ x} ⊆ {x ∈ X : g ≻ x}. Analogously,

{x ∈ X : g ≻ x} ⊆ {x ∈ X : f ≻ x}; therefore, {x ∈ X : f ≻ x} = {x ∈ X : g ≻ x}.
Let α ∈ (0, 1), we claim that αf + (1 − α)g ≿p f . Since ≿p is a weak order, it is

sufficient to prove f ⊁p αf + (1 − α)g, which holds if, for all x ∈ X such that f ≻ x,

αf + (1 − α)g ≻ x. Yet, we have just proved that f ≻ x if and only if g ≻ x. Axiom 4

then directly entails αf + (1− α)g ≻ x; which concludes.

Conclusion. It is well-known since Gilboa and Schmeidler (1989) that a weak

order defined on F satisfying the properties presented in Step 3 can be represented

by f 7→ minp∈C
∫
up(f)dp if it displays ambiguity aversion, such as ≿p, and by f 7→

maxp∈D
∫
uo(f)dp if it displays love for ambiguity, such as ≿o, where C and D are unique

non-empty convex compact subsets of ∆, up and uo are two affine functions on X, unique

up to positive affine transformation. Clearly, for all x, y ∈ X, x ≿p y if and only if x ≿ y,

and x ≿o y if and only if x ≿ y. Thus, up and uo are positive affine transformations of u,

and one may assume that up = uo = u. Finally, it remains to prove that C ∩D ̸= ∅.

Claim: C and D are non-disjoint if, and only if, for all f ∈ F , minp∈C
∫
u(f)dp ≤

maxp∈D
∫
u(f)dp.

We only prove the if part, the other direction being trivial. We proceed by contrapo-

sition. Suppose that C ∩ D = ∅. By the separating hyperplane theorem, there exists a

bounded measurable function φ : S → R such that minp∈C
∫
φdp > maxp∈D

∫
φdp. Yet,

there exists a sequence of simple functions {φn} that converges (in supnorm topology) to

φ. Since both φ̃ 7→ minp∈C
∫
φ̃dp and φ̃ 7→ maxp∈D

∫
φ̃dp are continuous, there is n ∈ N

such that minp∈C
∫
φndp > maxp∈D

∫
φndp. As aφn + b also satisfies this last inequality
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for all a > 0 and b ∈ R, one can choose a > 0 and b ∈ R such that aφn(s) + b ∈ u(X) for

all s ∈ S, which implies φn = u(f) for some f ∈ F :

min
p∈C

∫
u(f)dp > max

p∈D

∫
u(f)dp.

As a consequence, the fact that, for all f ∈ F , minp∈C
∫
u(f)dp ≤ maxp∈D

∫
u(f)dp,

implies C ∩D ̸= ∅.
Based on this claim, it remains to prove that minp∈C

∫
u(f)dp ≤ maxp∈D

∫
u(f)dp for

all f ∈ F in order to conclude.

The inequality minp∈C
∫
u(f)dp ≤ maxp∈D

∫
u(f)dp holds for all f ∈ F if and only if,

for all x ∈ X, for all f ∈ F , f ≻p x implies f ≻o x.

Suppose that for all x ∈ X, for all f ∈ F , f ≻p x implies f ≻o x. Suppose,

by contradiction, that there is f ∈ F such that minp∈C
∫
u(f)dp > maxp∈D

∫
u(f)dp.

Clearly, one has u(x∗) ≤ minp∈C
∫
u(f)dp ≤ u(x∗), where x∗ and x∗ are defined as in

the proof of Lemma 5. Since u is affine and X is convex, the set u(X) is convex. Thus,

minp∈C
∫
u(f)dp belongs to u(X). Similarly, one can deduce that maxp∈D

∫
u(f)dp lies in

u(X). Then, the convexity of u(X) implies that there exists x ∈ X such that

min
p∈C

∫
u(f)dp > u(x) > max

p∈D

∫
u(f)dp,

which is a contradiction as it implies, as minp∈C
∫
u(x)dp = maxp∈D

∫
u(x)dp = u(x),

f ≻p x and x ≻o f . The other direction of the equivalence is trivial.

Yet, for all x ∈ X, and all f ∈ F , f ≻p x implies f ≻ x. Indeed, f ≻p x if and only if

there exists y ∈ X such that f ≻ y and y 1 x; then Lemma 3 implies f ≻ x. By step 2,

we conclude that f ≻o x. We have thus proved that minp∈C
∫
u(f)dp ≤ maxp∈D

∫
u(f)dp

for all f ∈ F , and, thus, that C and D are non-disjoint.

If part. Assume that ≻ admits a unanimous dual-self representation. One can readily

check that Axioms 1 to 5 are satisfied.

For all f ∈ F , denote pf ∈ argmaxp∈D
∫
u(f)dp and p

f
∈ argminp∈C

∫
u(f)dp. Define
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also the constant acts f =
∫
fdpf and f =

∫
fdp

f
. Clearly, f 1 f and f 1 f ; moreover,


f ≻ x ⇐⇒ u(f) > u(x),

x ≻ f ⇐⇒ u(x) > u(f),

f 1 x ⇐⇒ u(f) ≥ u(x) ≥ u(f)

. (1)

We prove that Axiom 6 is verified by contradiction. Consider f, g ∈ F such that for

all x ∈ X, f 1 x implies g 1 x. If f ≻ g, then u(f) > u(g). However, by assumption,

g 1 f , which implies u(g) ≥ u(f) ≥ u(g), a contradiction. The same argument applies to

prove that g ≻ f cannot hold. Therefore, f 1 g.

Axiom 7 easily obtains from the comparisons in (1). Indeed, let f, g ∈ F and x, y ∈ X

such that f 1 x, g 1 y, x ≻ g, and f ≻ y. Using (1), one gets
u(f) ≥ u(x) ≥ u(f),

u(g) ≥ u(y) ≥ u(g),

u(x) > u(g), u(f) > u(y)

(2)

Then u(f) > u(x) > u(f) and u(f) > u(y) > u(g), that is f ≻ g, by definition of a

unanimous dual-self preference.

C Proof of Theorem 3

By assumption,

f ≻ g ⇐⇒

minp∈C
∫
u(f)dp > minp∈C

∫
u(g)dp

maxp∈D
∫
u(f)dp > maxp∈D

∫
u(g)dp

,

where u is an affine function defined on X, unique up to affine transformation, C and D

are two unique compact and convex subsets of ∆ with C ∩ D ̸= ∅. It remains to prove

that ≻ admitting such a representation satisfies Axiom 8 and 9 if and only if C = D. We

show in a very similar way to Echenique et al. (2022) that it satisfies Axiom 8 if and only

if D ⊆ C —the other inclusion being equivalent to Axiom 9 is shown in a symmetric way.

Only-if part. Suppose by contraposition that D ⊈ C: there is some p∗ ∈ D such

that p∗ /∈ C. Then, by the separating hyperplane theorem and the argument given in the
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Conclusion step of the proof of Theorem 1, there is a simple act ψ and k ∈ R such that

min
p∈C

∫
u(ψ)dp > k >

∫
u(ψ)dp∗. (3)

By scaling ψ and k appropriately, as u is affine, one can find f, h ∈ F and x ∈ X such

that u(f) = 1
2
u(ψ), u(h) = −u(ψ) and u(x) = 2k.27 Let g = 1

2
h+ 1

2
x:

u
(1
2
f +

1

2
g
)
=

1

4
u(ψ) +

1

2

(
−1

2
u(ψ) + k

)
=
k

2
,

that is, f and g are complementary, and 1
2
f(s) + 1

2
g(s) ∼ y for some y ∈ X such that

u(y) = k
2
, for all s ∈ S. Since u(f) = 1

2
u(ψ), Equation (3) implies

min
p∈C

∫
u(f)dp =

1

2
min
p∈C

∫
u(ψ)dp >

k

2
= u(y).

In addition, asD∩C ̸= ∅, maxp∈D
∫
u(f)dp ≥ minp∈C

∫
u(f)dp > u(y). As a consequence,

f ≻ y.

Futhermore, u(g) = u
(
1
2
h+ 1

2
x
)
= −1

2
u(ψ) + k. Since p∗ ∈ D, Equation (3) implies

max
p∈D

∫
u(g)dp ≥

∫
u(g)dp∗ = −1

2

∫
u(ψ)dp∗ + k > −k

2
+ k =

k

2
= u(y),

from which y ⊁ g. One thus has 1
2
f(s) + 1

2
g(s) ∼ y for all s ∈ S, f ≻ y, and y ⊁ g, which

is a violation of Axiom 8.

If part. Suppose that D ⊆ C. Consider any complementary acts f, g ∈ F such that
1
2
f(s)+ 1

2
g(s) ∼ x for some x ∈ X, for all s ∈ S, and assume f ≻ x, or, 1

2
u(f)+ 1

2
u(g) = k

with u(x) = k. f ≻ x is equivalent tominp∈C
∫
u(f)dp > k

maxp∈D
∫
u(f)dp > k

⇐⇒

1
2
minp∈C

∫
u(f)− u(g)dp > 0

1
2
maxp∈D

∫
u(f)− u(g)dp > 0

⇐⇒

1
2
maxp∈C

∫
u(f)− u(g)dp < 0

1
2
minp∈D

∫
u(f)− u(g)dp < 0

.

27We abuse notation in a standard way when writing u(f) = t, for t ∈ R, to actually denote u(f(s)) = t
for all s ∈ S.
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Since D ⊆ C, the last inequalities yield1
2
maxp∈D

∫
u(f)− u(g)dp < 0

1
2
minp∈C

∫
u(f)− u(g)dp < 0

.

Plugging u(f) = 2k − u(g), one obtains2maxp∈D
∫
u(g)− kdp < 0

2minp∈C
∫
u(g)− kdp < 0

⇐⇒

maxp∈D
∫
u(g)dp < k

minp∈C
∫
u(g)dp < k

.

As k = u(x), this means x ≻ g. Therefore, ≻ satisfies Axiom 8.

D Proof of Proposition 1

i) Let ≻U be a unanimous dual-self preference with unique representation (u,CU , DU),

and let ≻B be Bewley preference with unique representation (u,CB).

First, suppose that CU ∪DU ⊆ CB. If f ≻B g, then for all p ∈ CU ∪DU ,∫
u(f)dp >

∫
u(g)dp,

which implies, as CU and DU are not disjoint,minp∈CU

∫
u(f)dp > minp∈CU

∫
u(g)dp,

maxp∈DU

∫
u(f)dp > maxp∈DU

∫
u(g)dp.

Therefore, f ≻U g. Thus, ≻B is more conservative than ≻U .

Conversely, suppose ≻B is more conservative than ≻U and suppose, by contradiction,

that there exists p∗ ∈ CU \ CB. By the separation argument we already used in the

Conclusion step of the proof of Theorem 1, there are f ∈ F and x ∈ X such that∫
u(f)dp∗ > u(x) > max

p∈CB

∫
u(f)dp.

It follows that x ≻B f but x ⊁U f , a contradiction. Similarly, suppose there exists
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p∗ ∈ DU \ CB. Then there are f ∈ F and x ∈ X such that

min
p∈CB

∫
u(f)dp > u(x) >

∫
u(f)dp∗.

In this case, we have f ≻B x but f ⊁U x, another contradiction. Therefore, CU∪DU ⊆ CB.

ii) Let ≻U be a unanimous dual-self preference with unique representation (u,CU , DU),

and ≻T be a twofold multiprior preference with unique representation (u,CT , DT ).

First, suppose that CU ⊆ CT and DU ⊆ DT . Since DT ∩ CT ̸= ∅ and DU ∩ CU ̸= ∅,
CU ∩DT ̸= ∅ and DU ∩ CT ̸= ∅. If f ≻T g, then

min
p∈CT

∫
u(f)dp > max

p∈DT

∫
u(g)dp,

which implies

min
p∈CU

∫
u(f)dp ≥ min

p∈CT

∫
u(f)dp > max

p∈DT

∫
u(g)dp ≥ max

p∈DU

∫
u(g)dp.

max
p∈DU

∫
u(f)dp ≥ min

p∈CT

∫
u(f)dp > max

p∈DT

∫
u(g)dp ≥ max

p∈DU

∫
u(g)dp.

Since DU ∩ CU ̸= ∅, one gets

max
p∈DU

∫
u(f)dp ≥ min

p∈CU

∫
u(f)dp > max

p∈DU

∫
u(g)dp ≥ min

p∈CU

∫
u(g)dp.

Therefore, f ≻U g. Thus, ≻T is more conservative than ≻U .

Conversely, suppose ≻T is more conservative than ≻U and suppose, by contradiction,

that there exists p∗ ∈ CU \ CT . There are f ∈ F and x ∈ X such that

min
p∈CT

∫
u(f)dp > u(x) >

∫
u(f)dp∗,

from which it follows that f ≻T x but f ⊁U x, a contradiction. To prove that DU ⊆ DT ,

suppose there exists p∗ ∈ DU \DT . There are f ∈ F and x ∈ X such that∫
u(f)dp∗ > u(x) > max

p∈DT

∫
u(f)dp.

In this case, x ≻T f but x ⊁U f , another contradiction.
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E Proof of Proposition 2

Clearly, for each i ∈ {1, 2}, and all x ∈ X, f ≻i x if and only if f ≻ip x, where ≻ip is the

pessimistic relation defined, as in the proof of Theorem 1, by f ≻ip g if and only if f ≻i y

and y 1i g for some y ∈ X. Thus, ≻1 is more ambiguity averse than ≻2 if and only if ≻1p

is more ambiguity averse than ≻2p. When proving Theorem 1, we have shown that ≻ip

is represented by a maxmin expected utility functional; therefore, ≻1p is more ambiguity

averse than ≻2p if and only if C2 ⊆ C1.

Similarly, for each i ∈ {1, 2}, and all x ∈ X, x ≻i f if and only if x ≻io f , where ≻io

is the optimistic relation defined, as in the proof of Theorem 1, by f ≻io g if and only

if f 1i y and y ≻i g for some y ∈ X. As we have proved that ≻io admits a maxmax

expected utility representation, one obtains that ≻1 is more ambiguity loving than ≻2 if

and only if D2 ⊆ D1.

F Proof of Theorem 4

We will only prove that (i) implies (ii), the inverse implication being routine.

Lemma 6. A weak order relation ≻ on F satisfies Axioms 2, 3 and 5 if and only if there

exists a monotonic, constant-linear functional I : RS → R and a non-constant affine

function u : X → R such that, for all f, g ∈ F ,

f ≻ g ⇐⇒ I(u(f)) > I(u(g)).

Moreover, I is unique and u is unique up to positive affine transformation.

Proof. As before, define ≿ by f ≿ g if and only if g ⊁ f for all f, g ∈ F . Clearly, ≿ is

complete and transitive, and 1 is an equivalence (see Theorem 2.1 in Fishburn (1970)).

The weak order ≿ is continuous if, for all f, g, h ∈ F , {α ∈ [0, 1] : αf +(1−α)g ≿ h} and

{α ∈ [0, 1] : h ≿ αf + (1− α)g} are closed. Clearly, ≿ is continuous and non-trivial. It is

monotone if and only if, for all f, g ∈ F , if f(s) ≿ g(s) for all s ∈ S, then f ≿ g. Since

Lemma 4 holds, in particular, for a weak order whose asymmetric part satisfies Axioms

2, 3 and 5, and since 1 is an equivalence relation, ≿ is monotone.

Now, we check that that ≿ satisfies certainty independence: for all f, g ∈ F and
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x ∈ X,

f ≿ g ⇐⇒ g ⊁ f

⇐⇒ αg + (1− α)x ⊁ αf + (1− α)x

⇐⇒ αf + (1− α)x ≿ αg + (1− α)x.

As a consequence, by Lemma 1 in Ghirardato et al. (2004),28 there exists a monotonic,

constant-linear functional I : RS → R and a non-constant affine function u : X → R such

that, for all f, g ∈ F ,

f ≿ g ⇐⇒ I(u(f)) ≥ I(u(g)).

Moreover, I is unique and u is unique up to positive affine transformation.

Lemma 7. Suppose that I, I ′, I ′′ : RS → R are monotonic and constant-linear with

I ′ ≤ I ′′. Then the following statements are equivalent:

(i) For all ϕ, φ ∈ RS, if I ′(ϕ) > I ′(φ) and I ′′(ϕ) > I ′′(φ), then I(ϕ) > I(φ).

(ii) There exists α ∈ [0, 1] such that, for all φ ∈ RS, I(φ) = αI ′(φ) + (1− α)I ′′(φ).

Proof. We only prove that (i) implies (ii); the other implication is easily checked. Let

ϕ, φ ∈ RS such that I ′(ϕ) ≥ I ′(φ) and I ′′(ϕ) ≥ I ′′(φ), we will show that I(ϕ) ≥ I(φ).

Since I, I ′, I ′′ : RS → R are constant-linear, one has, for all n ∈ N,

I ′(ϕ+
1

n
) = I ′(ϕ) +

1

n
> I ′(ϕ) ≥ I ′(φ) and I ′′(ϕ+

1

n
) = I ′′(ϕ) +

1

n
> I ′′(ϕ) ≥ I ′′(φ).

It follows from (i) that I(ϕ) + 1
n
= I(ϕ+ 1

n
) > I(φ). Letting n go to infinity, one obtains

I(ϕ) ≥ I(φ). By Lemma A.3 in Frick et al. (2022), there exists α ∈ [0, 1] such that, for

all φ ∈ RS, I(φ) = αI ′(φ) + (1− α)I ′′(φ).

Assume that ≻ is a unanimity dual-self preference, ≻∗ is an invariant biseparable

preference, and that the pair (≻,≻∗) satisfies the extension property. Let u : X → R be

an affine function, and let C and D be two compact convex subsets of ∆ with C ∩D ̸= ∅
28Axiom 2 implies the “Archimedean axiom” in Ghirardato et al. (2004).
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such that

f ≻ g ⇐⇒

minp∈C
∫
u(f)dp > minp∈C

∫
u(g)dp

maxp∈D
∫
u(f)dp > maxp∈D

∫
u(g)dp

.

From the uniqueness result of Theorem 1, u is unique up to positive affine transformation,

and C and D are unique.

It follows from Lemma 6 that there exist a monotonic, constant-linear functional

I : RS → R and a non-constant affine function u′ : X → R such that, for all f, g ∈ F ,

f ≻∗ g ⇐⇒ I(u′(f)) > I(u′(g)).

Moreover, I is unique and u′ is unique up to positive affine transformation.

It trivially follows from the extension property that for all x, y ∈ X, u(x) = u(y) if

and only if u′(x) = u′(y), which implies that u is a positive affine transformation of u′.

Thus, one can assume without loss of generality u = u′.

Define I ′ : u(X)S → R and I ′′ : u(X)S → R by I ′(u(f)) = minp∈C
∫
u(f)dp and

I ′′(u(f)) = maxp∈D
∫
u(f)dp for all f ∈ F . Clearly, I ′ and I ′′ are monotonic, constant-

linear functionals. Thus, they can be uniquely extended to RS. We still denote these

extensions by I ′ and I ′′. Since C ∩D ̸= ∅, I ′′ ≥ I ′.

Now, the extension property implies that, for all ϕ, φ ∈ u(X)S, if I ′(ϕ) > I ′(φ)

and I ′′(ϕ) > I ′′(φ), then I(ϕ) > I(φ). Because I, I ′ and I ′′ are constant-linear, the

same implication holds actually for all ϕ, φ ∈ RS. It then follows from Lemma 7 that

there exists α ∈ [0, 1] such that, for all φ ∈ RS, I(φ) = αI ′(φ) + (1 − α)I ′′(φ). Thus,

I(u(f)) = αminp∈C
∫
u(f)dp+ (1− α)maxp∈D

∫
u(f)dp for all f ∈ F .

Finally, if ≻ is incomplete, then there exists f ∈ FS such that minp∈C
∫
u(f)dp <

maxp∈D
∫
u(f)dp. For all α′ ̸= α, αminp∈C

∫
u(f)dp+(1−α)maxp∈D

∫
u(f)dp ̸= α′minp∈C

∫
u(f)dp+

(1− α′)maxp∈D
∫
u(f)dp. That is, α is uniquely defined.

G Proof of Proposition 3

Let C = co (
⋃n

i=1Ci) and D = co (
⋃n

i=1Di). Clearly, C and D are two compact convex

sets, with C ∩ D ̸= ∅. By definition, for all i ∈ N , Ci ⊆ C and Di ⊆ D. Let ≻ a

unanimous dual-self preference relation on F , with representation (u,C,D).

i) Suppose that Pareto for comparability holds. Let f ∈ F and x, y ∈ X such that
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y ≻ f ≻ x. Proposition 2 implies that y ≻i f ≻i x for all i ∈ N . By Pareto for

comparability, y ≻0 f ≻0 x. This means that ≻ is both more ambiguity averse and more

ambiguity loving than ≻0. Therefore, applying Proposition 2 again, we obtain D0 ⊆ D

and C0 ⊆ C.

We now prove the converse implication. Assume that D0 ⊆ D and C0 ⊆ C. Let f ∈ F
and x, y ∈ X such that y ≻i f ≻i x for all i ∈ N . This is equivalent tominp∈Ci

∫
u(f)dp > u(x)

maxp∈Di

∫
u(f)dp < u(y)

for all i ∈ N.

Let p∗ ∈ argmaxp∈D
∫
u(f)dp. Since D = co (

⋃n
i=1Di), there exists (pi)i∈N ∈ ×i∈N Di

and (λi)i∈N ∈ Rn
+ such that

n∑
i=1

λi = 1 and p∗ =
n∑

i=1

λipi. Thus,

∫
u(f)dp∗ =

n∑
i=1

λi

∫
u(f)dpi ≤

n∑
i=1

λi max
p∈Di

∫
u(f)dp < u(y).

Since D0 ⊆ D,

max
p∈D0

∫
u(f)dp ≤ max

p∈D

∫
u(f)dp < u(y).

that is y ≻0 f . By a similar argument, one obtains f ≻0 x. Therefore y ≻0 f ≻0 x.

ii) Assume that caution for incomparability holds. Suppose, by contradiction, that

there is p∗ ∈ D \D0. Then, there are f ∈ F and x ∈ X such that∫
u(f)dp∗ > u(x) > max

p∈D0

∫
u(f)dp.

Since D = co (
⋃n

i=1Di), there exists (pi)i∈N ∈ ×i∈N Di and (λi)i∈N ∈ Rn
+ such that

n∑
i=1

λi = 1 and p∗ =
n∑

i=1

λipi. Then, there exists i0 ∈ N such that

∫
u(f)dpi0 > u(x) > max

p∈D0

∫
u(f)dp,

which implies

max
p∈Di0

∫
u(f)dp > u(x) > max

p∈D0

∫
u(f)dp.

Because x ≻0 f , as shown in the right hand side of this inequality, the left hand part of it
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implies, by caution for incomparability, minp∈Ci0

∫
u(f)dp > u(x), i.e. f ≻i0 x. Let x̄ ∈ X

such that f 1i0 x̄.
29 By caution for incomparability, f 10 x̄. However, by definition of

x̄, u(x̄) ≥ minp∈Ci0

∫
u(f)dp > u(x) > maxp∈D0

∫
u(f)dp, i.e. x̄ ≻0 f ; a contradiction.

Therefore, D ⊆ D0. Similarly, one gets C ⊆ C0.

We now prove the converse implication. Assume that D ⊆ D0 and C ⊆ C0. Let f ∈ F
and x ∈ X such that f 1i x for some i ∈ N . This is equivalent to

max
p∈Di

∫
u(f)dp ≥ u(x) ≥ min

p∈Ci

∫
u(f)dp.

Since Ci ⊆ C and Di ⊆ D, Ci ⊆ C0 and Di ⊆ D0. Therefore,

max
p∈D0

∫
u(f)dp ≥ max

p∈Di

∫
u(f)dp ≥ u(x) ≥ min

p∈Ci

∫
u(f)dp ≥ min

p∈C0

∫
u(f)dp,

that is, f 10 x.
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